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Abstract

There has been tremendous interest in large language models (LLMs) recently
due to their ability to tackle novel tasks. For example, many GPT variants since
GPT-3 have been able to generate code, write essays, and even create meal recipes.
Another recent trend has been using LLMs for planning. In this paper, we explore
how well LLMs can solve simple path planning games and to what extent they can
generalize to games not seen during training. We create a synthetic benchmark
of several path planning games and fine-tune T5 to generate paths from a natural
language description of the game. In addition, we benchmark the potential of
GPT-4 with Chain of Thought reasoning on all synthetic datasets. We find that the
fine-tuned model is capable of solving such games, but performance on unseen
games is poor.

1 Introduction

The NLP landscape has transformed drastically with the advent of large language models (LLMs)
[6, 11, 16, 19], which have shown surprising capabilities in linguistics and reasoning [7, 14]. Although
trained only on next token predictions, these models have exemplified seemingly emergent abilities
such as spatial-temporal reasoning [1, 4]. At the same time, challenges in generalizing traditional RL
methods have sparked interest in using language to better ground models [15, 24, 9]. This has led to
efforts such as [2] which embed a planning task’s information into an LLM and uses the enhanced
model to solve the task.

Recently, there has been work proposing benchmarks to standardize evaluating LLMs on planning
problems. [1] created the Path Planning from Natural Language (PPNL) benchmark, which tasks
the model with navigating a grid from a start to target location while avoiding obstacles. This was
tested both via fine-tuned T5 [20] model and through few-shot prompting of GPT-4 [16]. Meanwhile,
PlanBench [22] is a benchmark featuring block stacking and package shipping games. Here, all
evaluation was done via few-shot prompting GPT-4.

While in both papers GPT-4 and the fine-tuned T5 models were performant on the task, we are
interested in performance when the planning task changes. For example, given a fine-tuned T5 model
trained to solve the obstacle environment in PPNL, could it solve a variation of the environment where
it were only permitted to move in hops? Could a model trained on a variety of planning problems act
as a foundational model that can solve new planning problems? Note that these inquiries are mostly
relevant to “smaller" LLMs that could be fine-tuned, since the largest ones can perform well with just
in-context learning [6].

This is particularly relevant since more prior work [1, 8, 22] have focused on a simple obstacle
environment (i.e. moving from a start to end position while avoiding obstacles), but there exists a
much richer class of discrete path planning problems. Furthermore, there exists literature exploring
reinforcement learning approaches for both generalized graphs [5], grid-like pathfinding problems
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[10, 17], and multi-agent games [26] but to the best of our knowledge, we have not seen anyone
tackle general classes of path-planning problems with LLMs.

We create a synthetic dataset of games similar to the one in PPNL and evaluate a T5-model on
learning all the games as well as learning multiple games and testing on an unseen game. We also
compare these results against in-context learning with GPT-4.

2 Proposed Datasets

Task Formulation: Formally, we construct our problems as 5 × 5 grids with k < 23 obstacles
defined by the set O = {O1, O2, . . . , Ok}, special cells S = {S1, S2, . . . , Si} and constraint(s)
C. The locations for all these points are randomly sampled. For such a problem, we define each
path-planning task with an initial position P0 and a goal location P1. The task for the LLM agent is
then to perform a list of actions A = (A1, A2, . . . , At) that navigate from P0 to the goal location(s)
while avoiding obstacles in O and adhering to constraints C.

For each potential list of actions A, we describe a path as "optimal" if the length of the list is no
longer than by applying Dijkstra’s algorithm to the same setting. To compute these minimum paths,
we convert the underlying grids into a weighted graph where edge (u, v) cost is determined based on
C, and then computing the Dijkstra’s algorithm on the graph from node P0 to P1.

These additional constraints C and special cells S = {S1, S2, . . . , Si} are contingent on the under-
lying problem being solved. In our work, we introduce 8 new environments that build upon PPNL.
Each environment contains obstacle cells. They are as follows:

1. Teleport: There exist special cells S1 and S2, and reaching either on action At allows
movement to the other on action At+1 (or also to just move to a neighbor cell). For all
environments with special cells, the agent is permitted to move away from the cell in a
normal manner.

2. Beamer: There exists on special cell S1, which after reaching it on action At allows
movement to any other non-obstacle cell on action At+1. This means after reaching S1, one
can move to goal state P1 in the step afterwards.

3. Activated Beamer: There exist multiple teleportation cells S1, S2, . . . , Si, where landing
on any teleportation cell Sj on action At and staying on Sj for action At+1 allows for
teleportation to any other Sk, for j ̸= k and 1 ≤ k ≤ i on step At+2. This can be considered
a k-generalization of teleport, where there exist i teleport cells instead of 2 teleport cells.

4. Beamer Group: Similar to activated beamer, except without requiring to stay on the first
teleportation cell for an extra step (i.e. can immediately teleport from one teleport cell to
another teleport cell as an action At+1).

5. Diagonal: Movements can only be made along the diagonal. That is at coordinate position
(i, j), the valid moves are to positions (i − 1, j − 1), (i − 1, j + 1), (i + 1, j − 1), and
(i+ 1, j + 1).

6. Hop: There exist no additional special cells S, and every action hops 2 cells over (as opposed
to moving to a neighboring cell). Note that this allows hopping “over" obstacle cells. In the
case where an action moves outside the grid, the action is mended to place the agent on a
border cell.

7. Activated Hop: Similar to activated beamer, except the special ability is a hop of 3 cells
in any direction. Note that permitting only hops of 2 steps will not make sense in most
scenarios since the agent can just move the 2 steps (assuming no obstacle cell is blocking).
Similar to hop, the agent can move less than 3 steps in the case where it would place it
outside the grid boundary.

8. Prereq: There exist special cells S1, S2, . . . , Si, where each represents a prerequisite (i.e.
Si must be reached before P1). This is similar to the multi-goal environment in [1], except 1
target is treated differently.

For each game variant, we construct 1000 valid samples (i.e. the instance is solvable), and then
randomly split it into 80/10/10 for train, validation, and test respectively.
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To ensure there were enough training examples that made use of special cells and the validation and
test splits contained some solution paths using special cells, we report the percentage of paths with
special cells (for the environments that do have special cells)2.

Table 1: Percentage of each split’s paths that uses special cells

Dataset/Split TRAIN VALIDATION TEST

TELEPORT 13.75 21.00 12.00
BEAMER 31.63 31.00 26.00
ACTIVATED BEAMER 11.13 8.00 14.00
BEAMER GROUP 12.00 15.00 15.00
ACTIVATED HOP 16.60 16.00 19.00

3 Related Work

In terms of benchmarks and experiments conducted, PPNL [1] is most similar to our work. The
authors created 5× 5, 6× 6, and 7× 7 grid environments with between 1 and 5 obstacles and the
model was tasked with generating a route from a start to end location. A multi-goal variant was
also created which requires the model to visit multiple target cells. T5 and BART [12] models were
trained on 668 instances of the single goal 6× 6 grids and evaluated on the 5× 5 and 7× 7 grids
(including multi goal). Evaluating GPT-4 was done with the following few-shot prompting schemes:

1. Naive: the output sequence is something like “right, up, up, left, up, ..."
2. Action-and-Effect: the model tracks the effects of its actions by outputting something like

"Go right. You are at (0, 2). Go right. You are now at (0, 3) ..."
3. Chain of Thought: the model is encouraged to reason about the task and outputs something

like “(3,4) is 3 steps down and 3 steps to the right of (0,1). To avoid the obstacle at (2,1),
which is 2 steps down from (0,1), I should start by moving right..."

4. ReAct (Reason and Act): This is similar to chain of thought, except following every an
action (or series of actions) of the model’s choice, an oracle informs the model of its state

Additionally, [1] contained metrics for distance to goal, which measures for valid paths (those that
obey the constraints of the game) the number of steps required to reach the target after traversing the
path, and for unreachable accuracy, which measures how often the model was able to identify the
target is not reachable from the goal (unlike our examples, some of the game instances generated did
not have a solution).

The authors found that on 6× 6 single goal grids, the fine-tuned T5 model generally outperforms all
the GPT-4 prompting variants (and performs best overall), and all the fine-tuned models had some
success in unreachable accuracy while the GPT-4 variants had no success. The T5 model also tended
to generalize well to smaller grids, but performance suffered somewhat for multi-goal or when using
6-11 obstacles, and performance dropped significantly when the grid was 7× 7. ReAct was also the
most successful prompting method and performance remained the same on 7× 7 grids and dropped
somewhat with more obstacles or a multi-goal setup.

Notably, our work differs in that we investigate simultaneously learning multiple games via fine-
tuning and we explore if this helps generalization to out-of-distribution settings. Although it is likely
that prompting GPT-4 through in-context learning will yield better performance, this approach is not
lightweight nor easily examinable: the best performing prompt variation is ReAct which requires
multiple queries, and, unless GPT-4’s implementation is open sourced, there is no easy method of
inspecting its operation to examine failure cases or develop improvements.

4 Models

We fine-tuned a pretrained T5 model from Huggingface [23] for 25 epochs, selecting the best
performance on the validation split to report results on the test split. An example of the inputs and
outputs is as follows:
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Input: activated_beamer: tags: obstacle teleport activation; Navigate a 5x5 grid with
blocker cells and activated beamer cells, which allow you to teleport only between beamer
cells once activated, from (0, 0) to (3, 4). You can only move up, down, left, or right.
A blocker cell is [a blocker cell: you cannot travel to these cells]. The blocker cells are
located at (0, 1), (1, 3), (1, 4), (2, 2), (3, 0), (4, 0), (4, 4). A beamer cell is [a beamer cell:
after landing on this cell and staying for 1 step, you can teleport to any other beamer cell 1
step later]. The beamer cells are located at (1, 1), (2, 4), (3, 2), (3, 3).
Output: (0, 0)(1, 0)(1, 1)(1, 1)(2, 4)(3, 4)

For GPT-4, we used Chain of Thought prompting and 4 in-context examples. For games that have
special cells, the first 2 examples featured solution paths that only used regular cells, while the last 2
examples had paths making use of the special cells. We did not test ReAct, despite the results in [1]
due to needing to prompt multiple times for a single path, which we believed to require excessively
more compute than inference on T5 (and hence is not a good comparison).

Our chain of thought inputs and outputs are formatted similar to the following:

Input: Navigate a 5x5 grid with blocker cells and activated beamer cells, which allow you
to teleport only between beamer cells once activated, from (0, 1) to (1, 0). You can only
move up, down, left, or right. A blocker cell is [a blocker cell: you cannot travel to these
cells]. The blocker cells are located at (4, 1). A beamer cell is [a beamer cell: after landing
on this cell and staying for 1 step, you can teleport to any other beamer cell 1 step later].
The beamer cells are located at (1, 1), (3, 0).
Output: (1, 0) is 1 left and 1 down from (0, 1). We can directly follow such a path. This
corresponds with the sequence: (0, 1)(0, 0)(1, 0)

5 Results

For each of our datasets, we tracked the following statistics for all models’ generated paths:

1. Invalid Syntax: Percentage of output strings that cannot be parsed

2. Valid: Percent of paths that do not violate any properties (i.e. traveling on a cell that contains
an obstacle from the set O) or underlying constraints C of the problem. The path does not
have to reach the target.

3. Special Path: Percent of paths that performed a special move from one of the special cells.
The path does not have to reach the target, but does have to be valid.

4. Reach Goal: Percent of paths that reach the goal from the starting location while satisfying
all of C of the problem.

5. Optimal: Percent of paths that are no longer than that generated via Dijkstra’s algorithm.

6. Exact: Percent of paths exactly the same as the optimal path observed in Dijkstra’s algorithm.

5.1 Multitask Finetuned T5 Outperforms GPT-4

Across most datasets, training the T5 model on all the datasets resulted in more paths reaching the
goal, more paths reaching the goal optimally, and more paths exactly matching a path from Dijkstra’s
algorithm than prompting GPT-4. This shows that “smaller" LLMs can learn multiple tasks. Perhaps
this is unsurprising given results in information extraction tasks in NLP that use the same set of model
weights for different roles [18].

Outside of prereq, all problem formulations had agents who generated valid paths with probabilities
between 0.68 and 0.79 (and similarly reached the goal state within the same bounds). Perhaps
most surprisingly, the “easy" obstacles case was not the one with highest percentage of valid paths,
potentially due to the additional special cells leading to easier-to-optimize problems. For example,
the beamer environment, while on paper more complicated than the obstacle environment due to
the larger search space of potential paths, is significantly easier from a human perspective since one
can focus on optimizing a minimum path (P0, P1), or optimize the minimum path (P0, S1) since the
beamer cell allows for movement to any other cell, including the target cell P1.
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Table 2: Benchmarks for T5 fine-tuned on all datasets across each environment on the test split. We
do not report “valid syntax" since the model performed perfectly here. Bolded results are the highest
percentage in their respective category. INVALID results are not included since output was always
parsable.

Dataset VALID SPECIAL PATH REACH GOAL OPTIMAL EXACT

OBSTACLES 70.00 0.00 70.00 65.00 56.00
TELEPORT 77.00 8.00 77.00 62.00 51.00
BEAMER 78.00 20.00 77.00 69.00 61.00
ACTIVATED BEAMER 68.00 7.00 68.00 63.00 58.00
BEAMER GROUP 79.00 7.00 79.00 67.00 58.00
DIAGONAL 78.00 0.00 76.00 72.00 64.00
HOP 79.00 0.00 79.00 76.00 63.00
ACTIVATED HOP 74.00 10.00 74.00 66.00 58.00
PREREQ 36.00 0.00 20.00 10.00 5.00

Table 3: Benchmarks for Chain of Thought GPT-4 prompting on the test split. Bolded results are
the highest percentage in their respective category, except for INVALID where lower percentages are
better.

Dataset INVALID VALID SPECIAL PATH REACH GOAL OPTIMAL EXACT

OBSTACLES 4.00 71.00 0.00 71.00 69.00 17.00
TELEPORT 2.00 70.00 70.00 62.00 49.00 8.00
BEAMER 2.00 70.00 32.00 70.00 58.00 46.00
ACTIVATED BEAMER 1.00 68.00 55.00 68.00 29.00 22.00
BEAMER GROUP 7.00 63.00 25.00 63.00 46.00 32.00
DIAGONAL 10.00 75.00 0.00 75.00 72.00 66.00
HOP 3.00 58.00 0.00 58.00 53.00 17.00
ACTIVATED HOP 5.00 61.00 37.00 61.00 42.00 34.00
PREREQ 3.00 35.00 0.00 33.00 17.00 2.00

As for prereq, it seems to be a difficult version of path-planning given GPT-4’s performance here.
Certainly, solving it optimally seems to require time exponential to the number of prerequisite cells.
We conjecture the main challenge lies in this problem requiring longer horizon planning. For example,
the average path length was 14.4, compared to 4.7 for all other datasets. An empirical result that can
be observed from the table is that this was the only setting with more than 1% between the percentage
of valid paths and percentage of paths that reached the goal. Looking closer at the generated outputs,
we often observed the model’s path getting “stuck" in a loop.

5.1.1 GPT-4 has Some Probability of Producing Malformed Outputs

Although not significant, we observed that GPT-4’s outputs were sometimes malformed. The
percentage of malformed outputs was highest for the diagonal environment. Checking the malformed
outputs, we observed a lot of them consisting of paths that moved “regularly" (so directly up, down,
left, or right). We hypothesize that such movements represent an overwhelming majority of grid
navigation scenarios, and this results in biased training data for the model.

5.1.2 GPT-4 is Much More Prone to Using Special Cells

Perhaps the most drastic difference between T5 and GPT-4 was the latter consistently produced more
paths that used special cells across all datasets. Notably, the percentage of special paths was even
higher than what was in the test split. We initially hypothesized that this might be due to the last 2
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in-context examples being examples that used special paths, which some experiments suggest biases
the model [25]. However, when we switched to the first 2 in-context examples being the ones with
special paths, the results changed an insignificant amount.

5.2 Generalizing to Unseen Games

We additionally tested the ability of the T5 model to solve games not seen during training. In
particular, we investigated if it could solve beamer group, prereq, and diagonal, while utilizing all
remaining datasets to train the model. Specifically, we train on all but 1 game and test on the 1
held out game. Beamer group was chosen given that it was the best performing game (based on
percentages of valid paths and paths that reached the goal) and perhaps was easiest. Prereq was
chosen due to its difficulty. Diagonal was chosen to really test if the model was processing the input
prompt (as opposed to pattern matching the prompt and “memorizing" games and deciding what to
output).

Table 4: Results for Evaluating on Unseen Games for T5. We do not report “valid syntax" since
the model performed perfectly here.

Dataset VALID SPECIAL PATH REACH GOAL OPTIMAL EXACT

BEAMER GROUP 68.00 19.00 68.00 64.00 57.00
PREREQ 86.00 0.00 3.00 3.00 3.00
DIAGONAL 0.00 0.00 0.00 0.00 0.00

Unsurprisingly, the beamer group results are somewhat worse than when the training set included the
environment 3. Interestingly, many more generated paths used teleporting. We think this indicates
one of 2 possibilities:

1. This is similar to how GPT-4 aggressively uses special cells when exposed to a new prompt
(a prompt it never saw during training)

2. The model is able to pattern match beamer group to beamer (which it does see during
training) from the input instructions and pretends it’s actually solving an instance of a
beamer game

We believe the latter to be more likely given the similar proportion of paths generated using special
cells in beamer (when trained on all datasets) and in beamer group (in this setting). The fact that the
model fails to actually understand the prompt is shown in the results for diagonal. This setting is
trivial generalization beyond left, right, up, down grid traversals for humans and the previous results
in 3 indicate it is likely easy for the model too. However, the model fails to generate a valid path.
Upon manual inspection of some outputs, we saw the paths corresponded to an obstacle setting. This
strongly suggests that the model memorizes the format of games to decide how to operate as opposed
to processing the prompts each time.

Finally, although significantly fewer paths for prereq successfully reach the target, many more of
these paths are valid. Looking at the generated paths, we observe better avoidance of obstacles and
most paths reaching the target location but not visiting all the prerequisite cells. We hypothesize that,
because the model is encouraged to generate long paths when training prereq, generated paths are
more likely to run into obstacles. In this setting, the model might believe it is navigating an obstacle
environment, and hence is biased to avoid obstacles.

6 Conclusions and Future Work

In this paper, we introduce 8 new synthetic datasets that expand upon existing grid-style path planning
problems. Most of them feature non-trivial movement or constraints to challenge models beyond
path-finding in an obstacle-course-like setting.

We also extend previous work and show that models can be fine-tuned to learn all these variations
at once and can even outperform much larger LLMs such as GPT-4. Additionally, we showed that
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fine-tuned models likely pattern-match inputs, as opposed to understanding them like in human
reading, and therefore fail to generalize to environments not seen during training.

Something to investigate more thoroughly might be analyzing how scaling models affect performance.
Given that GPT-4 shows impressive performance with only in-context learning, perhaps fine-tuning
models larger than T5 (for example Llama-2 [21]) could significantly improve performance. This
would also require significantly more data, but this is easily obtainable given the synthetic nature of
most planning datasets.

Methods for solving reasoning problems might be another area worth investigating in order to improve
path planning. Works such as [13, 3] propose breaking down complex tasks into smaller components
that are more easily solvable by existing methods. While prompting methods such as Chain of
Thought and ReAct emulate this, perhaps there are better ways to simplify planning problems than
just splitting by timesteps.
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