
Cislunar Explorers Semester Report

Tyler King

May 22, 2022

1

Contents

1 Introduction 3

2 Comms Work 3
2.1 Flatsat Setup . 3
2.2 Comms Problem Statement 4

3 Unscented Kalman Filter Documentation 4
3.1 OpNav Subsystem Documentation 5
3.2 UKF-Documentation . 5
3.3 Lucid Flowchart UKF Models 6

4 Code Cleanup 7

5 General Overview of Trajectory UKF 8
5.1 Initial Arguments . 8
5.2 Cholesky Factorization . 8
5.3 Generating Sigma Points . 9
5.4 Propagation Step . 9
5.5 New Estimate . 10

6 UKF Trivial Tests 10
6.1 Trivial Unit Test . 10
6.2 Trivial Bounded Test . 11
6.3 parameterized Implementation 11

7 UKF Truth Data Validation 11

8 Error Computations 12
8.1 Mean Squared Error . 12
8.2 Absolute Error . 13

9 Status 14

10 Next Steps 15

11 Development Process Reflection 15

12 CS Learning Reflection 16

References 17

2

1 Introduction

This semester I moved from the Communications subteam to the Optival
Navigation (OpNav) subteam, working closely with the software side and
unscented Kalman filters (UKFs) in particular.

A large part of the semester revolved around setting up documentation,
which would be used to help build up my understanding of the various compo-
nents of OpNav along with allowing me to set up formal reports for students
in future semesters. This would segue into a focus on working on UKF unit
tests, which began with initial trivial tests that were dependent on input
values and then expanding upward and comparing it with existing data from
other sources (like traj2.csv from Sean and the Orekit simulation data from
Dr. Muhlberger).

I worked closely with Emerald Liu, Tanya Zhou, and Rohit Valiveti, first
working with them on analyzing and documenting UKFs and then moving
on to setting up the test ukf functions.py method that would contain our
code for trivial tests and then more advanced tests to existing data.

2 Comms Work

2.1 Flatsat Setup

Early on in the semester, me and Toby were tasked with setting up the flatsat
and moving it out of B40 and into B30 (our new lab room). Although there
was already an ESD mat and grounding tools in the area, they hadn’t been
used in a little while and thus we were worried about their quality.

We started by dusting down everything and emptying/cleaning down a
box that we would use to store our flatsat. Working with Josh and members
of Alpha, we were able to enter B40 and stay grounded while moving the
flatsat to a moving table, which we then rolled into B30, grounded ourselves
again, and set up flatsat. As a part of the setup, we also took some grounding
materials from B40, along with some ESD cream for future use.

This setup was then used by Emerald and Yolanda to fix the crossing
over of the graphs in Heroku (as a continuation of Ka-Hyun’s work from
FA21). This was successfully fixed and these changes were then updated to
the repository.

3

Figure 1: Image of the flatsat setup in the the back left corner of B30. We
covered it in a box to make sure that no dust got into the flatsat
components and grounded everything as a safety precaution.

2.2 Comms Problem Statement

To help finalize the work I did last semester for future students who may
work on the communications subteam, I worked with Paul, Toby, and other
members who were associated with comms last semester to formulate a list
of all past and current problems, along with listing their importance and
whether or not the problem would be tacking.

3 Unscented Kalman Filter Documentation

The first half of my semester was characterized by a lot of work related to
setting/writing up documentation.

4

https://cornell.app.box.com/file/927168082577

3.1 OpNav Subsystem Documentation

The very first task I did this semester was conduct a small write-up for the
importance of UKFs and their connection to the overall OpNav system in
this document. It would go on to serve as a general onboarding for OpNav
for future members.

In particular, I was tasked with gathering relevant materials (including
end of semester reports and other core documents) that discussed content
about the trajectory and attitude UKFs. I also helped trace how this sys-
tem evolved over time (i.e. swapping from an MEKF to a UKF due to the
nonlinear dynamics of our system) and track the (original) testing suite for
UKFs designed by Sean.

3.2 UKF-Documentation

Figure 2: Excerpt from UKF-Documentation that covers my preliminary
analysis of ukf.py

This was the first in-depth UKF review I did. A large part of this doc-
umentation involved writing up the various parameters and outputs of the
trajectory and attitude UKFs and using these to give a high level overview
of each step of the algorithm.

In particular, I discussed the contents of the relevant inputs from const.py

and the importance of their particular data structures. This information

5

https://cornell.app.box.com/file/921128943910
https://cornell.app.box.com/file/927174810316

would flow into the work I did a few weeks later when I built up the Lucid
flowchart models for attitude and trajectory UKFs.

3.3 Lucid Flowchart UKF Models

Figure 3: Breakdown of trajectory UKF inputs, outputs, and individual
component relationships.

6

https://lucid.app/folder/invitations/accept/inv_391cceaa-e580-40f9-9f98-6d0398b851b9
https://lucid.app/folder/invitations/accept/inv_391cceaa-e580-40f9-9f98-6d0398b851b9

Figure 4: Breakdown of attitude UKF inputs, outputs, and individual
component relationships.

4 Code Cleanup

Another major focus this semester was cleaning up past code to make it
more readable and easier to operate on, both for this semester and in future
semesters. Most of these edits were made in const.py and ukf.py, includ-
ing small issues such as cleaning up excess variables (cameraParams) and
removing them to allow for easier readability of ukf.py along with dealing
with pathing conflicts in const.py. This was something I talked about with
Adam and Stephen, where we went through and fixed every single path to
allow for this file to run on all devices.

It is worth noting that we are currently looking at the importance of
Kalman gain, since it seems like, while this value is computed, it is not
necessarily used is any significant way (only to test the dynamics model) in

7

ukf.py.

5 General Overview of Trajectory UKF

Note that this entire section is more thoroughly outlined in this
document.

Due to the nonlinear environment that occurs in space, Unscented Kalman
filters (UKFs) were chosen by Paul Salazar [4] and implemented by both Paul
and Sean Kumar [3] to model trajectory/attitude.

Because of the distinctly nonlinear environment surrounding the measure-
ments and dynamics of the trajectory vector for the spacecraft, UKFs are
implemented, which rely on creating an aggregate of points that are built via
probabilistic models of noise. Note that we use the Wan/Der Merwe notation
instead of the Julia/Uhllman notation for our trajectory UKF [5].

In the case of the trajectory UKF, we have 6 degrees of freedom (3 velocity,
3 position) [4, 1, 2].

5.1 Initial Arguments

To initialize the UKF, an initial state estimate of the trajectory initState

is needed along with an initial covariance matrix P for error. Other measure-
ments include moonEph, sunEph, and measurements, which all can be used
to help determine the initial trajectory vector. Other arguments include
main thrust info and dynamicsOnly which are used to vary the ordinary
differential equation (ODE) that all sigma points are propagated through.

5.2 Cholesky Factorization

To begin the computation for the UKF, we utilize a Cholesky factorization
model that decomposes P (k) (the covariance matrix) and Q(k) where Q(k)
is the process error covariance matrix. For Cislunar’s trajectory UKF, this
is a constant.

The columns of the Cholesky decomposition of these two matrices are
used to determine the spread of the sigma points in the initial state.

We take the Cholensky decomposition matrices and redefine them as 1×6
matrices. These newly defined column vectors are then used to generate
sigma points.

8

https://cornell.app.box.com/file/960845634576
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L307
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L309
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L304
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L305
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L306
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L310
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L311
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/const.py#L623
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py

5.3 Generating Sigma Points

By definition of a UKF, 2(nx+nv)+1 sigma points are generated (the function
used for this is makeSigmas). For the trajectory UKF, nx is defined as 6,
and the same is true for nv. This gives us 2(6 + 6) + 1 = 25 total sigma
points to work with, each of which have dimensionality 6. As a result, all our
sigma points are stored in two 6 × 25 matrices. The first of which contains
a matrix of all our sigma points and the second of which consists of a noise
matrix by which our initial sigma points vary by in the propagation step.

It is worth noting that there is a high degree of symmetry that the sigma
points experience surrounding the initial estimate. Due to the non-random
selection of these sigma points, this degree of symmetry will always exist,
although it will typically be embedded in higher dimensions. For our trajec-
tory UKF, the space of our sigma points will be in six dimensions, with sigma
points falling along one of six lines that intersect at the initial estimate.

The position and noise of these sigma points are determined by the set
of equations outlined in Paul Salazar’s end of semester report [4]. Note that
this selection is standard in UKF literature.

When selecting the particular sigma points, note that there are scaling
parameters that are based on the selection of sigma points such as nx and
α, which are then used to compute new variables λ and κ which are then
used to tune the sigma points. In the case of the trajectory UKF, note that
nx = 6 and α = 0.001.

5.4 Propagation Step

The sigma points are then propagated forward by some time step dt through
some ODE. For the trajectory UKF, we use a gravitational ODE for our
dynamics function that is based on the Runge-Kutta (RK) model:

χi(k + 1) = f(k, χi(k), vi(k)).

As of the writing of this document, we are looking into increasing the
sub-stepping of the RK4 (4th order Runge-Kutta method) to increase the
accuracy of the final trajectory UKF output.

Furthermore, the measurements associated with each sigma point are also
propagated, giving us new values for the process error of each point:

ζ i = h(k + 1, χi(k + 1)).

In the repository, our measurement model is defined by measModel.

9

https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L24
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L359
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L360
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L24
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L24
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L359
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/const.py#L629
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L99
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L133
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L146

5.5 New Estimate

After all sigma points have been propagated, the initial estimate point is
given a higher rating while all other sigma points are given a lower weighting.
These weights are then used to compute the expected estimate and expected
mean measurement and can be found in newEstimate.

New computations for weights are also used to compute updates covari-
ance estimates. findCovariances is used to compute these changes

Again, the zeroth point has a higher weight which includes certain tunable
values α and β. As mentioned earlier, α is fixed to 0.001, while β is a constant
fixed to 2.

This allows us to compute the covariance matrices for expected residual
covariance, state covariance, and cross covariance respectively (the latter two
of which are used to compute the Kalman Gain):

To account for errors in the pixel conversion, the sensor error R is added
to the cross covariance matrix.

The Kalman gain is then computed. This Kalman gain is used to deter-
mine whether more trust should be placed in the measurements obtained or
in the dynamics model. This value also allows us to compute updated state
and covariance estimates.

6 UKF Trivial Tests

6.1 Trivial Unit Test

We began building up this test case by simply testing the trajectory UKF
against itself to make sure that we were obtaining somewhat logical results
for one time step. We began by passing in no camera measurements as
an argument and ran tests with an initial state vector velocity of 0. We
then confirmed that the error bounds for the diagonal values of the error
covariance matrix (± 1 standard deviation) would contain the values after
the single time step.

A major step I focused on was correcting the implementation of
test ukf functions.py to fit into the unit test framework that had become
commonplace over the past few semesters. While the original trajectory ukf
testing script (test ukf.py) did not have this implemented, Stephen was
adamant about utilizing this package for all future tests.

10

https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L270
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L231
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/const.py#L630
https://github.com/Cislunar-Explorers/FlightSoftware/blob/fba0f028f4a9a463d65055a1a435cdee94ba4ae6/OpticalNavigation/core/ukf.py#L289

6.2 Trivial Bounded Test

Due to the limitations of such a trivial test (results become irrelevant past a
single time step), we began looking at alternatives methods to test the out-
puts of our trajectory UKF. One proposed example was having realistic upper
bounds for the state vector positions and velocities that were dependent on
the initial values (i.e. checking that the values did not drift far beyond hard
set bounds). This allowed for much greater scaling, which meant we could
run tests with higher time-steps along with incorporating sub-stepping into
our computations.

6.3 parameterized Implementation

Around this time, we also introduced the parameterized package to deal
with the difficulty of scaling up creation of unit tests. More specifically, it
allowed us to easily stack 1× 6 vectors for testing our expected UKF output
with the outputs obtained from Orekit or traj2.csv. Although this would
be an additional package that would be a mandated install for any person
interested in running OpNav in the future, it greatly speeds up the design
of various state vectors that we conduct tests on in the unit test class of
test ukf functions.py (and has been fully integrated for any future work
done on this script).

7 UKF Truth Data Validation

To create a less trivial test that implements more versatile tests, we (me,
Tanya, Emerald, Rohit) decided to utilize past truth data that was developed
by Dr. Muhlberger using the Orekit simulator (traj2.csv). This truth data
allowed us to leverage known simulated results for relative position, relative
velocity, relative distance to sun, and relative distance to moon to serve as a
baseline comparison to the outputs of our trajectory ukf. Since the data was
spaced out by a deviation of 3600 seconds (i.e. 1 hour intervals), we used
these 1 hour checks as a benchmark for the trajectory UKF, setting dt to
be the equivalent 3600 seconds and comparing the ukf output after every dt

(until the upper bound time of 208800 seconds was reached) to the expected
results.

11

https://github.com/Cislunar-Explorers/FlightSoftware/blob/master/OpticalNavigation/tests/test_ukf_functions.py
https://cornell.app.box.com/file/871995137464

8 Error Computations

To check the accuracy of the aforementioned computations, certain compar-
ison algorithms were needed. Although initially I proposed using a method
like mean-squared error (MSE), we determined to stick with the approach
Sean used in the past that involved working with absolute error.

8.1 Mean Squared Error

Figure 5: Trivial tests for velocity and position for MSE with the unit test
package.

To compute the MSE, we utilize the equation

1

n

n∑
i=1

(
Yi − Ŷi

)2

where n is the number of data points, Yi is the observed values (i.e. the
outputs of our trajectory UKF), and Ŷi is the expected values (i.e. the values
obtained from the Orekit simulation data set). Note that n ranges from 1 to
3, and is utilized twice: once for the velocity vector and once for the position
vector. The units for the first vector are m/s2, while the units for the second
vector are m2.

12

This algorithm was implemented into test ukf functions.py with the
MSE function, which takes 2 state vectors (first one observed, second one
expected) and computes the MSE for velocity and position independently
(since these two sets tend to differ by colossal margins, so doing a total MSE
would not yield interesting results as one would overpower the other).

I also wrote 2 unit tests that confirmed the logical (trivial) outputs of the
MSE function and added these to the unit test in case of future interest in
working with them. However, since Sean had already worked with absolute
error in the past, we felt that it was more fitting to continue operating with
that instead.

8.2 Absolute Error

It is worth noting that the computations involved in absolute error and mean
squared error are relatively similar (this can be visually confirmed from the
equations). However, instead of the units being squared, the error for these
values are instead to the first power (i.e. the error for the velocity vector is
m/s and the error for the position vector is m.

Again separating the position and velocity errors to make the compu-
tations more independent, we (me, Tanya, Emerald, Rohit) utilize two sets
of equations to compute their respective errors that were taken from Sean’s
past work.

For position error, we use the equation:√
(xi − x′

i)
2 + (yi − y′i)

2 + (zi − z′i)
2.

Note that xi, yi, zi represent the results of the trajectory UKF’s x, y, and z
position outputs respectively, while the prime versions represent the expected
results (i.e. the results generated by the Orekit simulator). For the velocity
error, we use the similar equation:√

(vi,x − v′i,x)
2 + (vi,y − v′i,y)

2 + (vi,z − v′i,z)
2.

In a similar way, vi,x, vi,y, vi,z represent the trajectory UKF’s x, y, and z
velocity outputs respectively, while the prime versions of those represent the
expected results (again generated from the Orekit simulator).

To confirm that the results are reasonable, we again determine boundings
for both position and velocity (this operation was mainly spearheaded by
Tanya be worked on by everyone on the UKF subteam). We initialized these
to be 1000km for position and 5km/s for velocity, which failed for the first
two iterations of the algorithm (t=0 and t=3600). It is worth noting that the

13

velocity error was always well below the 5km/s bounding, but the position
error did fail at t=0/t=3600.

When the position bounding was reduced to 100km for position, the first
15 (of 58) iterations failed.

As a result of these relatively large inaccuracies given the small initial
position sizes, we looked into the various internals of the code. Toby men-
tioned that we were likely using a Runge-Kutta method with dimensionality
4 (RK4) for our dynamics model, which is a common iterative method
that serves as a numerical analysis for ODEs. However, due to the mas-
sive (1 hour) time steps we were taking, the low dimensionality of the RK4
model was not sufficient to obtain highly accurate data as an approximation
scheme for our gravitational ODEs. Something that was proposed was uti-
lizing scipy’s integrator (scipy.integrate) as a replacement for RK4, but
no final decision has been made yet.

Knowing that RK4 tends to produce poor results for 1 hour time-steps,
we then attempted to decrease the time-step down to smaller intervals (60
seconds, 20 minutes, etc) as a way to confirm whether or not the RK4 model
would give reasonable values for these instances (something everyone on the
UKF subteam worked on). Even in these scenarios, there were still multiple
failures (again almost exclusively related to position), which indicated that
there were other issues at play.

One proposed solution was processing camera measurements to improve
accuracy of the UKF. This is something that is more thoroughly addressed
in the future work section (section 10).

9 Status

Thanks to a heavy focus on Kalman filters and the work of Tanya, Rohit,
and Emerald, we were able to make a lot of very solid documentation on
UKFs, Kalman filters, particle filters, and a variety of other relevant algo-
rithms that may prove useful to people in future semesters. This is closely
tied to the success we had in setting up a variety of testing options for the
trajectory UKF, eventually culminating in a PR that merged all relevant
work we had done with testing up to that point (for reference, the PR can
be found here). Although there was only 1 main PR across the semester
for the UKF subteam, it merged a lot of key information, and backed with
the relevant documentation, allows for a much more fluid understanding of
UKFs for other individuals who may have an interest in OpNav.

Other less minor statuses include the setup of the flatsat (albeit with
the slight caveat that the radio board is still somewhat dysfunctional) and

14

https://docs.scipy.org/doc/scipy/tutorial/integrate.html
https://github.com/Cislunar-Explorers/FlightSoftware/commit/fba0f028f4a9a463d65055a1a435cdee94ba4ae6

cleaning up pre-existing code to make future operations easier.

10 Next Steps

One large goal we hope to do is integrate the results of our UKF tests with
the CislunarSim (our in-house flight simulator) to use that data as our truth
information. Although we are still waiting for this repository to finish being
set up, we hope to have this as a future step for upcoming semesters.

Another major task is being able to thoroughly test camera measurements
and integrate them into test ukf functions.py. This should allow for a
solid reduction of error since the assigned weightings of sigma points should
be more accurate.

Another solution to lowering observed error is looking at alternative ap-
proaches to RK4 for the dynamics model. While packages such as
scipy.integrate have been proposed, there are certain trade offs that come
with replacing RK4 that will have to be considered if such a solution is de-
cided upon.

Finally, we hope to eventually expand beyond just testing the trajectory
UKF and begin progress on the attitude UKF. Much of the groundwork and
documentation is already set out (sections 3.2, 3.3), so the key task is to begin
analyzing what has already done in test attitude.py and begin building
up unit tests for this UKF. The code from attitude.py is not as thoroughly
documented, however, and may need to be more thoroughly analyzed to
understand the differences that come with utilizing quaternions.

11 Development Process Reflection

One thing that differentiated this semester from the last semester was the
heavy use of Jira, which meant it was extremely easy to pick up any extra
tasks (especially for our UKF subteam group) and divy up other larger tasks.
Making Jira a requirement for all subteams was a step in the right direction
for Cislunar and clears a lot of the confusion on what to do during down
time (not in meetings, over break, etc). Personally, I did not find the sprints
to be as effective as Jira tickets just because the issues tended to flow over
very frequently and were rarely contained into a single sprint. A large part
of this was due to the mathematical difficulty of understanding UKFs, which
served as a blocker for a lot of early sprints (and meant even simple issues
got kicked down multiple weeks).

Given my minimal exposure to version control and branch management

15

https://github.com/Cislunar-Explorers/CislunarSim
https://github.com/Cislunar-Explorers/FlightSoftware/blob/master/OpticalNavigation/tests/test_attitude.py
https://github.com/Cislunar-Explorers/FlightSoftware/blob/master/OpticalNavigation/core/attitude.py

last semester (mainly when I was working with the AX5043 radio chip), the
experiences I had with Git this semester felt like a breath of fresh air. It made
it much easier to try out small-scale changes without decimating the master
branch, and also made it easy to compartmentalize different subgroups.

I felt that the code reviews were particularly useful, and the ease with
which Stephen, Toby, and Adam were accessible makes the team dynamic
much better than at a more hierarchical system. This also ties to PR sub-
missions, where it is always nice having a more experienced CS person look
over everything and certify that it is correct.

Although there was a multitude of relevant resources provided by various
members of Cislunar, I personally felt that the best resources were Paul
Salazar’s end of semester MEng report and Dr. Adam’s introduction to
Kalman filters. Furthermore, there were a compilation of useful videos that
were produced by Emerald that gave good visual intuition to these tools.

Given my more hardware-oriented background last semester, I am familiar
with a lot of the specialized assets that we use in the lab. This includes
various tools like flatsat and CAD which have allowed me to work seamlessly
with I&T in the past, along with getting cleanroom certified which allows me
to do core hardware work (not particularly relevant this semester, but was
important last semester and likely will be in the future).

12 CS Learning Reflection

The deep dive into Git this semester gave me key skills that I’ve been using
in personal projects and hope to continue using in future professional set-
tings. Similarly, with the massive size of the repository, I learned numerous
good techniques related to large-scale repository contribution, including pull
request submissions, pair programming (which was particularly relevant for
our group given the mathematical maturity required to work with UKFs),
and code reviews.

I also felt that I’ve become much more comfortable typing out large
amounts of code, since my only prior exposure was CS 2110, and the projects
there did not compare to the work done at Cislunar. This closely ties to the
importance of working with a team, as I felt that over the semester I learned
a lot of good techniques that relate to group coding (VS liveshare, peer pro-
gramming, working on separate branches, etc).

Overall it was a satisfying semester where I made a great deal of inter-
and intrapersonal progress in the field of computer science.

16

References

[1] A. Hunter. Estimation: Introduction by example. “https://
vanhunteradams.com/Estimation/Estimation.html”.

[2] S. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92(3):401–422, 2004.

[3] E. Kumar. End of semester report. “https://cornell.app.box.com/
file/582013089083”, Dec. 2019.

[4] P. Salazar. End of semester report meng. “https://cornell.app.box.
com/file/461100064300”, May 2019.

[5] E. Wan and R. Van Der Merwe. The unscented kalman filter for non-
linear estimation. In Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), pages 153–158, 2000.

17

https://vanhunteradams.com/Estimation/Estimation.html
https://vanhunteradams.com/Estimation/Estimation.html
https://cornell.app.box.com/file/582013089083
https://cornell.app.box.com/file/582013089083
https://cornell.app.box.com/file/461100064300
https://cornell.app.box.com/file/461100064300

	Introduction
	Comms Work
	Flatsat Setup
	Comms Problem Statement

	Unscented Kalman Filter Documentation
	OpNav Subsystem Documentation
	UKF-Documentation
	Lucid Flowchart UKF Models

	Code Cleanup
	General Overview of Trajectory UKF
	Initial Arguments
	Cholesky Factorization
	Generating Sigma Points
	Propagation Step
	New Estimate

	UKF Trivial Tests
	Trivial Unit Test
	Trivial Bounded Test
	parameterized Implementation

	UKF Truth Data Validation
	Error Computations
	Mean Squared Error
	Absolute Error

	Status
	Next Steps
	Development Process Reflection
	CS Learning Reflection
	References

